liubo-tech.github.io

热爱技术 从我做起

View on GitHub

分布式定时任务——elastic-job 返回

一、前言

在我们的项目当中,使用定时任务是避免不了的,我们在部署定时任务时,通常只部署一台机器。部署多台机器时,同一个任务会执行多次。比如短信提醒,每天定时的给用户下发短信,如果部署了多台,同一个用户将发送多条。只部署一台机器,可用性又无法保证。今天向大家介绍一款开源产品,分布式定时任务解决方案—- elastic-job。

二、简介

Elastic-Job是一个分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。在我们的项目中使用了轻量级无中心化解决方案,Elastic-Job-Lite。

1、分片概念

任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。

例如:有一个遍历数据库某张表的作业,现有2台服务器。为了快速的执行作业,那么每台服务器应执行作业的50%。 为满足此需求,可将作业分成2片,每台服务器执行  1片。作业遍历数据的逻辑应为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。 如果分成10片,则作业遍历数据的逻辑应为:每片分到的分片项应为ID%10,而服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9,直接的结果就是服务器A遍历ID以0-4结尾的数据;服务器B遍历ID以5-9结尾的数据。

Elastic-Job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系。

2、作业高可用

上述作业中,如果有一个应用挂掉,分片项将会重新分片,没有挂掉的应用将获得分片项0-9。

三、实际应用

这里我们采用大家都比较熟悉的基于spring配置文件的配置。

1、引入jar包

<!-- 引入elastic-job-lite核心模块 -->
<dependency>
    <groupId>com.dangdang</groupId>
    <artifactId>elastic-job-lite-core</artifactId>
    <version>${latest.release.version}</version>
</dependency>

<!-- 使用springframework自定义命名空间时引入 -->
<dependency>
    <groupId>com.dangdang</groupId>
    <artifactId>elastic-job-lite-spring</artifactId>
    <version>${latest.release.version}</version>
</dependency>

2、作业程序

public class MyElasticJob implements SimpleJob {
    
    @Override
    public void execute(ShardingContext context) {
        switch (context.getShardingItem()) {
            case 0: 
                // do something by sharding item 0
                break;
            case 1: 
                // do something by sharding item 1
                break;
            case 2: 
                // do something by sharding item 2
                break;
            // case n: ...
        }
    }
}

我们的定时任务要实现SimpleJob接口,并实现execute方法。在写程序时,我们通常不会用case区分不同的分片,context.getShardingItem() 可以获得当前的分片项,context.getShardingTotalCount()获得总分片数。我们把当前分片项,总分片数传入到sql中,按照规则字段取模,检索出该分片处理的数据,再进行处理。

3、spring配置

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:reg="http://www.dangdang.com/schema/ddframe/reg"
    xmlns:job="http://www.dangdang.com/schema/ddframe/job"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
                        http://www.springframework.org/schema/beans/spring-beans.xsd
                        http://www.dangdang.com/schema/ddframe/reg
                        http://www.dangdang.com/schema/ddframe/reg/reg.xsd
                        http://www.dangdang.com/schema/ddframe/job
                        http://www.dangdang.com/schema/ddframe/job/job.xsd
                        ">
    <!--配置作业注册中心 -->
    <reg:zookeeper id="regCenter" server-lists="yourhost:2181" namespace="dd-job" base-sleep-time-milliseconds="1000" max-sleep-time-milliseconds="3000" max-retries="3" />
    
    <!-- 配置作业-->
    <job:simple id="oneOffElasticJob" overwrite="true" class="xxx.MyElasticJob" registry-center-ref="regCenter" cron="0/10 * * * * ?" sharding-total-count="3" sharding-item-parameters="0=A,1=B,2=C" /> </beans>

作业中心我们采用zookeeper,我们项目中采用做小的zk集群,3台。在作业中心配置中,server-lists填写3台zk地址,用“,”隔开,zk1:port1,zk2:port2,zk3:port3。下面就是我们作业的具体实现的配置规则,class实现类、registry-center-ref配置中心zk的id(regCenter)、cron定时任务规则、sharding-total-count总分片数。

overwrite=”true”这个配置很重要,因为这些配置都要上传到zk中,当你改变了配置之后,zk中并没有改变,执行的任务还是旧的。所以要加上这个配置。

这样,我们的分布式定时任务就配置好了,剩下的就是部署,上面的例子中,我们的总分片数是4,如果我们部署2台机器,每台机器将获得2个分片,部署4台机器,每台机器获得一个分片。如果出现宕机情况,分片将重新分配,从而做到高可用。

四、总结

当当的这款开源产品是非常棒的,解决了我的项目中定时任务的单点问题,使系统有了高可用的保证。要说缺点嘛,也有一个,就是每一个任务都需要新写一个类实SimpleJob接口。